Go to All in Learning and complete the bell-ringer.

Learning Objectives: Students will be able to determine how many significant figures a number has and how to correctly round mathematical answers.

Scientific Notation

*Only one number to the left of the decimal.
*Always end in x 10 ^ (exponent)
*Big numbers have positive exponent
*Numbers less than 1 have negative exponent
If you move the decimal to the left, it will have a positive exponent.

If you move the decimal to the right, it will have a negative exponent.

Put the following in Scientific Notation (try these before class, we will go over them in class)
$34.342 \quad 0.00202 \quad 3,430,000$
$0.00342 \quad 50,043 \quad 123.456$

Importance of Significant Figures

*in measurements
*consistency
*does not over inflate accuracy or precision

Precision vs Accuracy

Precision is how good you are
Accuracy is how good the equipment is

Aug 28-8:10 AM

Rules for significant figures

1) all non-zeros are significant
2423.21 has 6 sig figs
2) all counting numbers infinitely significant

12 people has 2 sig figs. 100 computers has 3 sig figs
3) all conversion factors are infinitely significant

12 inches per foot and 100 cm per meter have infinite sig figs
4) any number between significant figures is significant

3005 has 4 sig figs because the 3 and 5 are non-zeros and the zeros are significant because they are between sig figs.
5) zeros that act as place holders are NOT significant
0.004 only has 1 sig fig. 2500 has only one sig fig

6) all numbers before the $\times 10^{\wedge} \exp$ are significant in scientific notation
3.36×10^{-12} and 1.00×10^{3} both have 3 sig figs
7) Zeros at the end of a whole number if it is followed by a decimal.

2500 has 2 sig figs, but 2500 . has 4 sig figs.

Covering up zeros and "extra effort"
 If you cover up a zero and the value changes, then it is not significant.
 If you cove up a zero and the value does NOT change, it is significant.

How many sig figs do each of the following have?
342.023
3.230×10^{-3}
43000
0.000432
320.030
0.00321
14.0345
5000
3200.2
0.00330
320
20.0001

How to round:

Determine how many sig figs you are keeping, look at the number after the one you are keeping and round up if it is >5, round down if it is <5.

If the next number is $=5$ and there are any numbers after the 5 , round up, otherwise round even.
$\begin{array}{ll}\text { Consider the number: } & 46,355 \\ \text { Rounded to } 1 \text { sig fig } & 50,000 \\ \text { Rounded to } 2 \text { sig figs } & 46,000 \\ \text { Rounded to } 3 \text { sig figs } & 46,400 \\ \text { Rounded to } 4 \text { sig figs } & 46,360\end{array}$

Rules for Multiplying and Dividing with Sig Figs

1) Determine how many sig figs each number in the calculation has.
2) Multiply/Divide the numbers
3) Round the answer to the least number of sig figs

Rules for adding/subtracting with sig figs

1) Make sure all numbers are in the same unit of measurement.
2) Add or Subtract
3) Round the answer to the least number of decimal places
*note - you can gain or lose sig figs when adding or subtracting

Complete the assignment on Significant Figures in Google Classroom.

