LO: Students will be able to use Hess's law to determine heat of reactions.

DOL: Students will successfully answer at least 4/5 Hess's Law questions.

Enthalpy change

the amount of energy absorbed by a system as heat during a process at constant pressure

Enthalpy of reaction

the quantity of energy transferred as heat during a chemical reaction

Exothermic

energy is a product
Endothermic
energy is a reactant

Thermochemical equation

an equation that includes the quantity of energy released or absorbed

$$
4 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+967.2 \mathrm{~kJ}
$$

Molar enthalpy of formation
the enthalpy change that occurs when one mole of a compound is formed from its elements in their standard state at 298 K and 1 atm

Enthalpy of Combustion

the enthalpy that occurs during the complete combustion of one mol of a substance

Hess's Law
the overall enthalpy change in a reaction is equal to the sum of the enthalpy changes for the individual steps in the process

Hess's Law can be solved exactly like using the addition / subtraction method used in solving systems of equations in Algebra.

$$
\left.\begin{array}{rl|l}
3 x+2 y=10 & 2 x+y=10 \\
x-2 y & =6 \\
\hline 4 x \quad=16 & x+2 y=-1 \\
x=4
\end{array} \right\rvert\,
$$

Example of Hess's Law

$$
\mathrm{C}(\mathrm{~s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad+/-\mathrm{H}^{0} \mathrm{f}
$$

To determine this H^{0} fwe can use the combustion enthalpies of C and H

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \quad \mathrm{H}^{0}{ }_{\mathrm{C}}=-890.8 \mathrm{~kJ}$
$\mathrm{H}^{0}{ }_{\mathrm{C}}=-393.5 \mathrm{~kJ}$
$\mathrm{H}_{\mathrm{c}}=-285.5 \mathrm{~kJ}$

Reverse reactions will have a reverse amount of energy, as well we can multiply equations by any positive factor (such as 2). Chemical equations are additive, so we can cancel anything that is the same on both sides and add the rest together vertically......

$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$	$\mathrm{H}_{\mathrm{c}}^{0}=-393.5 \mathrm{~kJ}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	$\mathrm{H}_{\mathrm{c}}^{0}=2(-285.5) \mathrm{kJ}$
$\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$	$\mathrm{H}^{0}=890.8 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})$	$\mathrm{H}_{\mathrm{f}}^{0}=-73.7 \mathrm{~kJ}$

Since the heat of formation of methane gas is a negative, that means energy must enter the system so it is endothermic.

The energy can be written as a positive number and placed on the reactants side.
$\mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g})+73.7 \mathrm{~kJ} \longrightarrow \mathrm{CH}_{4}(\mathrm{~g})$

