LO: Students will be able to calculate the energy associated with changing temperatures and states of matter.

DOL: Students will successfully calculate thermal chemistry problems at least $4 / 5$ times.

Determine how much energy is needed to raise the temperature of water from $2.0^{\circ} \mathrm{C}$ to $78{ }^{\circ} \mathrm{C}$

How much energy does it take to melt 36.5 g of water at $0^{\circ} \mathrm{C}$?

How much energy does it take to freeze 402 mol of water at $0^{\circ} \mathrm{C}$?

Does it take more or less energy to turn 25 g of water into steam or turn 0.75 mol of ice into water?

How much energy will it take to raise 26.4 g of water (I) $24{ }^{\circ} \mathrm{C}$?

A 15.75-g piece of iron absorbs 1086.75 joules of heat energy, and its temperature changes from $25^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$. Calculate the specific heat of iron.

297 J of heat are needed to raise the temperature of aluminum from $22^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ where the specific heat of aluminum is $0.90 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$. What is the mass of the aluminum?

Steps for solving a COMPLETE thermo-chem

 question about water:-heating solid from -X up to 0 (the melting point)
-melting the solid already at 0
-heating the liquid but not going over 100
-vaporizing the liquid already at 100
-heating the gas from 100 to X

How much energy does it take to turn 14.5 g of water (s) at $-34^{\circ} \mathrm{C}$ into water (g) at $121^{\circ} \mathrm{C}$?

