LO: Students will be able to determine the pH and pOH of a solution based on the concentration of the dissolved solutes.

DO: Students will be able to correctly calculate pH and pOH at least $4 / 5$ times.

Aqueous Solutions and the Concept of pH
Water has been shown to be a very weak electrolyte. This is due to the self-ionization of the water molecules.

Concentration of molecules

[molecule] means the concentration of that molecule

Water -

- It undergoes self-ionization

$$
\mathrm{H}_{2} \mathrm{O}_{(1)}+\mathrm{H}_{2} \mathrm{O}_{(1)} \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}{ }_{(\mathrm{aq)}}+\mathrm{OH}_{(\mathrm{aq})}^{-}
$$

- $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$means "hydronium ion concentration in moles per liter"
- In water, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{M}$ and

$$
\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{M}
$$

- Ionization constant for water $\mathrm{K}_{\mathrm{w}}=1.0 \times 10^{-14}$

When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]$, the solution is neutral.

When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>\left[\mathrm{OH}^{-}\right]$, the solution is acidic.

When $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<\left[\mathrm{OH}^{-}\right]$, the solution is basic.

Calculating $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$

Consider a 1 L solution containing 0.4 g of NaOH . The concentration would be .01 M . In scientific notation, this is $1.0 \times 10^{-2} \mathrm{M}$.

Since there is one ion of OH^{-}for every molecule of NaOH , then $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-2} \mathrm{M}$.

Given that in water, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10-{ }^{14}$, and our solution of NaOH is in water and we already know the $\left[\mathrm{OH}^{-}\right]=1 \times 10^{-2}$,
then $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\underline{1.0 \times 10-14}=1.0 \times 10^{-12}$
1×10^{-2}
pH is defined as the negative of the common logarithm of the hydronium ion concentration.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

pOH is defined as the negative of the common logarithm of the hydroxide ion concentration.

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]
$$

The sum of the pH and pOH of a solution is 14

$$
\mathrm{pH}+\mathrm{pOH}=14
$$

hence, the pH of the .01 M solution of NaOH

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
$$

$$
\mathrm{pH}=-\log \left(1.0 \times 10^{-12}\right)
$$

$$
\mathrm{pH}=12
$$

$$
\begin{aligned}
& \mathrm{pOH}=14-\mathrm{pH} \\
& \mathrm{pOH}=14-12=2
\end{aligned}
$$

Determine the pH of a 0.500 Lsolution containing 15 g of HCl

Determine the pH of $0.2 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{SO}_{4}$

Determine the pH of concentrated HCl (12M)

Determine how many grams of NaOH you would need make a 250 mL solution with a pH of 11.2

